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Paleoclassical transport is a recently proposed fundamental process that is claimed to occur in current-carrying

resistive plasmas and to be missing in the collisional drift-kinetic equations (DKE) in standard use. In this Comment

we raise three puzzles presented by paleoclassical transport as developed in [1], one concerning conservation and two

concerning uniqueness.

For convenient reference below, we highlight selected features of paleoclassical transport as developed in [1] (these

statements are not a complete description of either paleoclassical processes or the magnetic configurations in which

they occur):

S-I. Paleoclassical transport occurs in a strictly axisymmetric current-carrying resistive plasma in a torus.

S-II. If
(

∂ψ
∂t

)

x
goes to zero in [1] (2πψ is the poloidal flux), terms are absent in some equations but the

calculations appear to go through straightforwardly; i.e., without a structural change.

S-III. The paleoclassical electron thermal diffusivity χpc
e depends only on the safety-factor q and local plasma

profiles. There is no explicit dependence on the loop voltage, V`.

S-IV. The 6D kinetic equation—Vlasov operator plus Fokker-Planck collisions—is said to be correct and to

contain paleoclassical transport.

S-V. Particles which are collisionless at least through the drift timescale diffuse with the magnetic flux.

In Statement S-V, we refer not to entire particle distributions responsible for the plasma resistivity, η (various

collisionality regimes for the bulk electrons are considered in [1]), but, for example, to individual relatively high-energy

electrons. The phenomenological derivation in [1, Sec. VI] concludes “that electron guiding centers are advected and

diffused radially with the same Fokker-Planck coefficients as those for poloidal magnetic flux (field lines).” This is the

key hypothesis of the paleoclassical model. No effect of a finite collision-time for the electron whose guiding-center

is under consideration is invoked, and the derived χpc
e is independent of the particular electron’s velocity. From this
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it is clear that paleoclassical transport is not a correction to the collision operator. Rather, paleoclassical transport

is due to particles’ guiding centers being nearly tied to ψ as it convects and diffuses in a current-carrying resistive

plasma. It is the guiding-center motion in the standard DKE for such plasmas that is said to be in error.

Re S-I, note that the small helical distortions arising from the transport [1] are not necessary to cause the transport.

(Helical resonances lead to a large multiplier on the axisymmetric result.)

From S-II, we are free to apply the model to configurations with vanishing inductive electric field. We therefore

begin with the simplest case, restricting the discussion to 100% non-inductively driven resistive steady states (NISS);

i.e., to the case with static electric and magnetic fields.[4] The poloidal flux still satisfies a (steady-state) diffusion

equation (the ∇2 term is balanced by the source term (current drive)), and the expression given in [1] for χpc
e is

unaffected by the steady-state condition (S-III). In the appendix, we generalize slightly to consider Ohmic drive in

axisymmetric steady states.

Paleoclassical puzzle 1: In an axisymmetric NISS plasma, the canonical angular momentum of a collisionless particle

is conserved, so a collisionless particle is not free to diffuse with diffusing poloidal flux. If the timescale in S-V can be

extended through the magnetic flux-diffusion timescale, there is a clear problem with conservation in the paleoclassical

model. If it cannot be extended, two questions arise: (1) Where does a collision time (for the particle whose guiding-

center orbit is under consideration) smaller than vs. greater than the magnetic flux-diffusion timescale enter in the

derivation of Eq. (91) [1]? (2) The dissipation of a single electron’s angular momentum in a NISS plasma—and so its

rate of departure from a constant angular-momentum surface—depends only on the static B and E and the electron’s

own collision time. But in the paleoclassical model, the electron’s paleoclassical motion off surfaces is additive and

controlled entirely by the rate of magnetic flux-diffusion; it is independent of the particular electron’s v. How is this

resolved?

Paleoclassical puzzle 2: Whether or not ψ obeys a diffusion equation, collisionless particle orbits depend only on B

and E. Consider now a NISS force-free plasma (β → 0, V → 0, υ/η → 0, where β is the ratio of material-to-magnetic

pressure, V the fluid velocity, and υ the viscosity). In this case, B depends only upon J‖(x). Given flexibility in

electron and ion heat- and particle-sources, one can construct solutions of the steady-state transport equations with

different resistivity profiles but identical E, while adjusting the current sources as needed in response to the density-

and temperature-profile changes so that J‖ does not change. These solutions lead to different predictions for the rate

of paleoclassical diffusion (which, again, depends only on field-line geometry and η). In a gyro-averaged description

of the motion, the paleoclassical diffusion of guiding centers is in addition to the usual guiding-center drifts, which do
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not change as the resistivity changes. However, the full orbit is unique for given B and E for a collisionless particle;

and it is unique in a statistical sense for given B, E and plasma profiles for a collisional particle. Identical equilibria

with differing η thus present a puzzle—non-unique orbits—for any particle whose neoclassical and classical transport

is small cf. the paleoclassical diffusion rate.

Paleoclassical puzzle 3 arises from the key hypothesis S-V itself and the related comments, “magnetic-field lines

diffuse radially faster than collisions cause electrons to diffuse relative to them” [1, Sec. I], “The introduction of

plasma resistivity leads to radial diffusion of magnetic field lines” [1, below Eq. (64)], “Paleoclassical transport will be

caused by electrons. . . being nearly ‘frozen to’ and hence carried with the poloidal flux” [1, Sec. VI], and “The poloidal

magnetic flux ψ and hence field lines move relative to the toroidal flux ψt” [1, below Eq. (36)]. As is well known,

magnetic field-lines do not have a physical identity that survives from one instant to the next [2]. A velocity field vf.l.

can be ascribed to them for convenience [5], but this velocity is not a measurable quantity and in general (depending

on boundary conditions) there is freedom in its choice. Even in ideal MHD (where E‖ = 0 and the perpendicular fluid

velocity equals the E×B drift velocity), a slip between the E×B drift and the field-lines can be included if desired

(again, boundary conditions permitting). In Ref. [2], the constraints on the possible vf.l. are given for flux-conserving

or line-preserving (i.e., a line initially a field-line remains a field-line. A flux-conserving vf.l. will be line-preserving, but

not necessarily vice versa) choices. The freedoms in each case are apparent. For a static B, vf.l. = 0 is a permissible

but not unique flux-conserving choice. We emphasize that magnetic flux still diffuses radially in NISS plasmas, despite

the fact that (∂ψ/∂t)x and (∂B/∂t)x vanish. It is clear that (1) in NISS plasmas (and in general), magnetic flux and

magnetic field-lines need not move together; and (2) in the general toroidal time-dependent current-carrying resistive

case, there may be no permissible vf.l. [2], [3]. On the other hand, in cases with broken magnetic surfaces (e.g.,

stochastic fields in the vicinity of the X-point or islands in tokamaks), ψ itself is not a good coordinate, although a

vf.l. may be at least locally defined. Is the definition of the object to which electrons are tied in the paleoclassical

model then problem-dependent? For a problem in which permissible flux-conserving vf.l. exist and are not unique,

what is the basis for selecting which among them to take for the paleoclassical hypothesis?

We conclude with a remark upon S-IV. If “paleoclassical transport” is taken to mean the response of a particle

(guiding-center or full) to collisional processes which necessarily involve at least two other particles, a description of

discrete-particle effects that goes beyond the fluctuationless two-particle effects contained in the 6D Fokker-Planck

collisional kinetic equation would seem to be indicated.
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Appendix

Here we extend the discussion to include a steady inductive electric field. We consider an idealized Ohmic trans-

former, leading at steady state to the time-independent Faraday’s law ∇ × E = −V̄`δ(R)ẑ/(πR), with V̄` a con-

stant. (∂E/∂t)x and, except at R = 0, (∂B/∂t)x vanish. Taking a path around any closed toroidal loop gives the

toroidal loop-voltage V` ≡ −
∮

d` · E = −2πREtor = −2π
(

∂ψ
∂t

)

x
; note that the surface defining the poloidal flux

(2πψ ≡
∫

Bpol · dS) here is a disk (no holes) whose perimeter is a closed toroidal loop on the magnetic surface. For

the given steady-state Faraday’s law, V` = V̄`. The total electric field at steady state is then E = −∇φ− V̄`ϕ̂/(2πR),

where ϕ̂ is the unit vector in toroidal angle and φ is the scalar potential, with ∂φ/∂ϕ = 0. The magnetic differential

equation [5] in this case easily reduces to B · ∇(φ + V̄`ϕ/(2π) − s) = 0, or φ + V̄`ϕ/(2π) − s = g, where ∇g is

single-valued and normal to surfaces but otherwise arbitrary. There is no further constraint on E‖, and puzzle 3 is

essentially unchanged; in particular, vf.l. = 0 is still a permissible and flux-conserving choice for the magnetic field-line

velocity. Re puzzle 2, consider first an axisymmetric, fully Ohmically driven plasma. The surface-averaged Faraday’s

law in this case is:

〈E · B〉 = −
I

2π

〈

V`
R2

〉

+ 〈Bpol · E〉, (1)

where I ≡ RBtor and 〈f〉 ≡
∮ dlpol

|Bpol|
f/

∮ dlpol

|Bpol|
, the usual magnetic-surface average. Only the inductive E survives the

surface averages. In steady-state, the toroidal flux is constant in time; then the last term in Eq. (1), proportional to

the poloidal loop-voltage, vanishes. Noting that I〈1/R2〉 = 〈B ·∇ϕ〉, our steady-state flux-diffusion equation becomes:

−
V̄`
2π

=

(

∂ψ

∂t

)

x

= η
〈J · B〉

〈B · ∇ϕ〉
. (2)

(Writing J in terms of a second-order spatial derivative in the ∇ψ-direction on ψ yields the “radial” diffusion equation

for ψ.) Denote the values of the loop-voltage, resistivity, etc., at the steady-state solution of Eq. (2) with a set of

reference heat and particle sources by superscript “0”.

A partially inductively driven plasma obeys the magnetic flux-diffusion equation

η〈(J − JCD) · B〉 = −
I

2π

〈

V`
R2

〉

+ 〈Bpol · E〉. (3)
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At steady state, with driven current JCD adjusted so that 〈J · B〉/〈B · ∇ϕ〉 = 〈J0 · B0〉/〈B0 · ∇ϕ〉 (using this to

determine II ′ while simultaneously solving the Grad-Shafranov equation guarantees that J = J0), this reduces to

−
V̄`
2π

=

(

∂ψ

∂t

)

x

= η
〈(J0 − JCD) · B0〉

〈B0 · ∇ϕ〉

= η

[

−
V̄ 0
`

2πη0
−

〈JCD · B0〉

〈B0 · ∇ϕ〉

]

.

Next, we can choose a constant α and readjust the current-drive sources together with the heat sources so that

〈JCD · B〉/〈B · ∇ϕ〉 = −αV̄ 0
` /(2πη

0) while also maintaining (for given α and V̄`) η/η
0 in some constant ratio across

the plasma in steady-state. Then

V̄` = V̄ 0
`

η

η0
(1 − α). (4)

Finally we can adjust JCD and the heat and particle sources together, so that at steady state, in addition to the

conditions on J and η/η0, we find φ = φ0. If this last exercise is carried out for different α but the same V̄` and

reference configuration, the results will have identical B and E but different η, and puzzle 2—re uniqueness of orbits—

follows as before. In light of Eq. (4), we revisit the general discussion of S-II at the beginning of this Comment. (Note

that α = 1 ⇔ V̄` = 0 is the electrostatic case, i.e., a NISS plasma.) Does χpc
e go to zero continuously as V̄` goes to

zero? If η/η0 is held fixed while α is varied, the resulting steady-state plasmas will have identical B, φ, and η—and

therefore χpc
e —profiles. If χpc

e goes to zero continuously, and if χpc
e = 0 for a NISS plasma, how is this compatible

with S-III? Finally we remark on the development of Eq. (3) to obtain the magnetic-flux-diffusion equation for the

general axisymmetric time-dependent case: Had we proceeded (transforming from x to a radial coordinate, etc., as

in [1] and references therein), and then imposed the steady-state condition, the results here would be the same. This

is true independent of the choice of radial coordinate [6].

Re puzzle 1, particle orbits are affected by the constant
(

∂ψ
∂t

)

x
: there is now an inward pinch from the inductive

E×B drift cV̄`∇ψ/(2πR
2B2). The angular momentum of collisionless particles is still conserved, however, and they

cannot diffuse or convect away from the constant angular-momentum surfaces, which now shrink as ψ changes with

the constant
(

∂ψ
∂t

)

x
. (To maintain this configuration in steady state will require sources and sinks for the collisionless

particles. We choose to restrict these to small volumes localized around the edge and the magnetic axis. Paleoclassical

puzzle 1 for such particles is then applicable to the source-free region in between.) Similarly for the weakly collisional
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particles: the addition of the inward pinch does not affect the argument in the main text.
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∂t

)

x
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